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Abstract

In this paper, we show how to construct an nxn doubly stochastic matrix,

n > 4, with spectrum {1, — ﬁ, e, = ﬁ} and with prescribed elementary
1
n—

divisors of the form [k + 1) , kB > 2. This construction gives an answer to a

question stated by Minc in [3].

1. Introduction

Let A € C" and let
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S (09)

J
J(A) = S7AS = n2(h2)

Snp(2r)

be the Jordan canonical form of A (hereafter JCF of A). The n; x n; sub-
matrices
A; 1

I (i) = A L i=1,2 ..,k

are called the Jordan blocks of J(A). Then, the elementary divisors of A

are the polynomials (A —1;)", that is, the characteristic polynomials of

Tps(0), i =1, ., ko

A matrix A = (q; )ijl is called quasi-stochastic, if all its row sums
are 1 and it is called doubly quasi-stochastic, if all its row sums and
column sums are 1. It is clear that any quasi-stochastic (doubly quasi-
stochastic) matrix has the eigenvector e = (1, 1, ..., 1)T corresponding to
the eigenvalue 1. Denote by e; the vector with one in the k-th position

and zeros elsewhere. A nonnegative quasi-stochastic matrix is called
stochastic, while a nonnegative doubly quasi-stochastic matrix is called
doubly stochastic. In other words, a nonnegative matrix A is stochastic, if
and only if Ae = e, and it is doubly stochastic, if and only if AJ, = J,A

=dJ

n» Where J,, is the n x n matrix, whose entries are all l We shall
n
denote by E;; the nxn matrix with 1 in the (i, j) position and 0’s

elsewhere and by rank(X) the rank of the matrix X.

In [1, Theorem 2.8], the authors show that if A = {1, A9, ..., A,,} is a

list of real numbers satisfying certain conditions, then there exists a

positive doubly stochastic symmetric matrix with spectrum A and with
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arbitrarily prescribed elementary divisors. It is also proved in [1] that
Theorem 2.8 contains Theorem 2 in [2] and that A = {1, a, ..., a}, a € R,

is the spectrum of an n x n positive symmetric doubly stochastic matrix,

1
< .
a < l

if and only if —

In [2], Minc sets the question: Given a doubly stochastic matrix A,
does there exist doubly stochastic matrices with the same spectrum as A
and any legitimately prescribed elementary divisors ? (that is, its product

has to be equal to the characteristic polynomial of A and they cannot
include (A — l)k with %k > 1). Although Minc gives a positive answer to this

question when A is a positive diagonalizable doubly stochastic matrix, he

also shows that, in general, the answer is negative [2, Theorem 3]: The

matrix
0 1 1
1
3 1 0 1
1 1 0

has eigenvalues 1, — %, - %, but no 3 x 3 doubly stochastic matrix has

2
elementary divisors A —1 and (X + %) . Minc also shows that this result

does not extend to n = 4 : The doubly stochastic matrix

3 s 0 3
ERE
has eigenvalues 1, — %, - %, —% and elementary divisors A -1,

2
(X + %) , and A + % Minc says that it is not known what the answer is

for larger n. In this paper, we partially answer the question for n > 4. In
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particular, we show how to construct an n x n doubly stochastic matrix

with spectrum {1, — ;1, - ;1} and elementary divisors of the
n-— n-—

k
1) , k > 2. Our results are constructive, in the sense that
n—

form (k +

we can always construct the corresponding doubly stochastic matrix.

Examples are given to illustrate this construction.

2. Main Results

We shall need the following lemmas given in [2] and [3]:

Lemma 2.1 [2]. Let A be an nxn doubly quasi-stochastic matrix

with elementary divisors
A=1), (A =2)2, ..., (A=2,)"%, ng +--+np, =n—1,
2 k 2 k

and let 6 € C,0 = 0. Then (1-0)J, +0A is a doubly quasi-stochastic

matrix with elementary divisors
A=1), (A —0nrg)2, ..., (A= 0Orp)™*, ng +---+np =n-—1.

Lemma 2.2 [3]. Let q = (¢, ..., g, )T be an arbitrary n-dimensional

vector and A be a matrix with constant row sums equal to Ay and JCF

M
I, (A
STAS = J(A) = m (*2)

Jnk(}'k)
n . . T
Let A + Zi:lqi # A, 1 =2,..., n. Then, the matrix A+ eq” has JCF

J(A) + (Z?zlqi )Ei1. In particular, if Z?zlqi =0, then Aand A +eq”
are similar.

We also need the following lemma:
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Lemma 2.3. Let k > 2. Then, the k x kR matrix

3 5 S R B
k-1 k-1 k-1
a1, : 1
k-1 k-1
= : 1 . 1 :
F=|: T . T : (1)
1 : : I
k-1 ’ k-1
S U 1
Lk-1 k-1 k-1 i
has rank(F) = k —1.
Proof. Let q = (1, - LI ' and e=(,...,1)7 be
b k _ 1 b ’ k _ 1 ’ )
vectors in R*. Then eTq = 0 and the matrix
0 0 0 0
5 -1 0 0
T _ _ - :
F+eq” = 1 0 1 - :
- 0
1 0 0 -1
has eigenvalues 0, — k]jl R and rank(F + eqT) =k —1. Since

m,(0) =1, then from Lemma 2.2, F and F + eq! are similar. Hence,

rank(F) = rank(F + eq’ ) = k- 1. ]

The following result allow us to construct doubly stochastic matrices

having (k —1) quadratic elementary divisors.

Theorem 2.1. Let n, ke Z",n>2k>4. Then, there exists an nxn

doubly stochastic matrix A with spectrum A = {1, - L _ 1

n-1""7 n—l}’

and with elementary divisors

2 2
1 1 1 1
(7\.—1),(}\.4-”_1),...,(}\.-f-n_l),(}L+m),...,()&+n_1j.

(k-1)-times (n—2k+1)-times




146 JAVIER CCAPA and RICARDO L. SOTO

Proof. Let F'be the k x £k matrix in (1) and let the n x n matrix

F 1
It is clear that B is doubly quasi-stochastic, with all its eigenvalues
equal to 1. Since n > 2k, then (B-I1)" =0, m =2, 3, ..., and

r, =rank(B-1I)=rank(F)=F%k -1,

r, =rank(B-I)" =0, m=2,3,....

Thus, the number of Jordan blocks of B of sizes 1, 2, and 3, corresponding

to the eigenvalue 1, is respectively,

n-2k-1),

dl—dz :7'0—27'1 + 1y

k-1,

d2 —d3 =n —27‘2 + 13
dg —dy = 0.
Then,

=172, ..., (-1% (A-1),...,(x-1)
(k-1)-times n—2(k-1)- times

are the elementary divisors of the doubly quasi-stochastic matrix B. From

Lemma 2.1 with 6 = —%, and since nJ,, — B is nonnegative,
n

1

A:n—l

(an - B)’

is doubly stochastic with spectrum A, and with the desired elementary

divisors. ]

Lemma 2.4. Let k € Z© with k > 2. Then,

n-1F (n-1),...,(-1), )

k -times
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are the elementary divisors of the 2k x 2k doubly quasi-stochastic matrix

. -
-1 1 1
1 4 1
Ag, = -1 1 1 . (3
1 4 '
-1 1
i 1 - 1

Proof. Since (Ag;, — I)" =0 for m = k, k+1, ..., and
r; = rank(Ag, —I)i =k—-1, 1=1,..,k-1,

r, =rank(Ag, —I)" =0, m=k k+1,...,

then the number of Jordan blocks of size 1 and k, corresponding to the
eigenvalue 1, is respectively,

dl_d2 27‘0—21"1 + 1y

2k —2(k — 1)+ (k - 2)

-
and
dp —dpy1 = 1p1 — 21 + Tppq
=k-(k-1)-20)+0
=1.
Thus, the result follows. ]

Theorem 2.2. Let n, k € Z*, n > 2k > 4. Then, there exists an nx n

doubly stochastic matrix A, with eigenvalues 1, — 1 - L, and

n-1""" n-1
with elementary divisors
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(r-1), (X+nl_l)k,(X+n1_1j,...,(X+n1_1).

Proof. Let Ay, be the matrix in (3). Then, the n x n matrix

A
B:{ %

In—2k:|,

1s doubly quasi-stochastic with all its eigenvalues equal to 1. From

Lemma 2.4, B has elementary divisors

-1 (-1), ..., (x-1).

(n—k)-times

Then, from Lemma 2.1, and since nJ,, — B is nonnegative,

1

A:n—l

(nd, — B),

is doubly stochastic with spectrum A and with the desired elementary

divisors. u

Theorem 2.3. Let n,keZ"', k>2,n>k(k+1)-2. Then, there

1

exists an n x n doubly stochastic matrix A with eigenvalues 1, — Pt
n [—

, and with elementary divisors

1 1
r-1), (x+n_1j,...,(x+n_1),
{n—@}-times

1 2 1 3 1 k-1 1 k
A A A A .
( +n—J’( +n—J’ ’( +n—J ’( +n—J

Proof. Let Ay;,i=2,3,..., k, be the 2i x 2i matrix in (3) and let the

n x n matrix
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Ay
Ag
Ag

Ay,

In—k(k+1)+2_

From Lemma 2.4, the matrix B has elementary divisors

h-1),...,a-1), -1 0-173 -1 ..., -1~

{n—@ﬂ} veces

Then, from Lemma 2.1, and since n./,, — B is nonnegative,

1

A=——(nd, - B),

1s doubly stochastic with spectrum A and with the desired elementary
divisors. u

3. Examples

Example 3.1. From Theorem 2.1,

1 0 0 0 0 0
0 1 0 0 0 0
B 0 0 1 0 0 0
= 1 1 >
-1 5 3 1 0 0
1 1
3 -1 3 0 1 0
1 1 _
| 3 0 1 0 0 1]
1s doubly quasi-stochastic and
[0 1 1 1 1 1]
1 0 1 1 1 1
1 111 1 0 1 1 1
A=506-B)=75ly 1 1 o 1 1]
1 1
5 2 3 1 0 1
1 1
|5 3 2 1 1 0
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is doubly stochastic with elementary divisors

oo (o o8]

Example 3.2. From Theorem 2.3,

o

[ e ==
I = T T o S = S S S S S WY
I T = T = T = T = W e T =S S G =Y

= o= N O O
O N H O o
N O O e
— O o e e e e
[ T o S o S o S S G S S TGy S S Y

1
1
1
1
0
1
2
0
1
1

NeY i
_ B H R R R O N

has elementary divisors

r-1), (k + nl—ljg’ (k +ﬁ)2, (k +%), e (k +%)
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